Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Two-phase porous media flow is important in many applications from drug delivery to groundwater diffusion and oil recovery and is of particular interest to biomedical diagnostic test developers using cellulose and nitrocellulose membranes with limited fluid sample volumes. This work presents a new two-phase porous media flow model based on the incompressible Navier−Stokes equation. The model aims to address the limitations of existing methods by incorporating a partial saturation distribution in porous media to account for limited fluid volumes. The basic parameters of the model are the pore size distribution and the contact angle. To validate the model, we solved five analytical solutions and compared them to corresponding experimental data. The experimentally measured penetration length data agreed with the model predictions, demonstrating model accuracy. Our findings suggest that this new two-phase porous media flow model can provide a valuable tool for researchers developing fluidic assays in paper and other porous media.more » « less
-
This work presents a straightforward computational method to estimate the rotational diffusion coefficient (Dr) of cells and particles of various sizes using the continuum fluid mechanics theory. We calculate the torque (Γ) for cells and particles immersed in fluids to find the mobility coefficient μ and then obtain the Dr by substituting Γ in the Einstein relation. Geometries are constructed using triangular mesh, and the model is solved with computational fluid dynamics techniques. This method is less intensive and more efficient than the widely used models. We simulate eight different particle geometries and compare the results with previous literature.more » « less
-
Abstract It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore‐forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two‐phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore‐forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl‐modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA‐based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses.more » « less
-
This paper aims to clarify the influence of different types of fly ash on the mechanical properties and self-healing behavior of Engineered Cementitious Composite (ECC). Five types of fly ash with different chemical and physical properties were used in ECC mixtures. The fly ash to cement ratio was fixed at 3.0. The compressive and uniaxial tensile tests were conducted to evaluate the influence of fly ash type on mechanical properties. The permeability test was used to assess self-healing behavior of ECCs with different types of fly ash. The microtopography and chemical characteristics of the self-healing products in the crack were observed and examined by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). The fly ash with relatively higher calcium content and smaller particle size was found conducive to a higher compressive strength. The lower combined Al2O3 and CaO content of this fly ash, however, was found to enhance the tensile strain capacity. Furthermore, high calcium fly ash accelerates the self-healing process of ECC for the same pre-damaged level. The self-healing product was a mixed CaCO3/C-S-H system with the CaCO3 as the main ingredient.more » « less
An official website of the United States government
